OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORK ALGORITHMIC ACCURACY FOR THE IDENTIFICATION OF DIFFERENT FONT TYPES
Keywords:
Convolutional Neural Network (CNN), DenseNet121, ResNet50, VGG16, Identify Font TypeAbstract
Text not only conveys the message through the words used, but also through its visual aspects. One of the most influential visual elements is the type of font. Recognising and determining font types appropriately is essential, whether in the academic sector, the printing industry, graphic design, or digital systems. However, in practice, manually recognising font types takes time, skill, and high precision. With the advancement of digital technology, the variety of font types is increasing, making the process of identifying fonts more complicated. This requires the development of methods that are able to distinguish different types of fonts precisely and accurately. This study reveals the potential of Convolutional Neural Network (CNN) algorithms as an optimisation in facing font identification challenges, as well as to prove that deep learning can provide more efficient and precise solutions, by comparing three different CNN architectures, namely DenseNet121, ResNet50, and VGG16. The implementation of the method is carried out by applying data augmentation techniques and setting CNN parameters such as the number of epochs, learning rate, batch size, Adam optimiser, and image size. The results showed that the DenseNet121 model achieved an accuracy of up to 96.8%, ResNet50 92.9%, and VGG16 96.4%. The convolutional neural network algorithm proves that it can identify various font types with optimal accuracy.
Downloads
References
I. Ameer, G. Sidorov, H. Gomez-Adorno, and R. M. A. Nawab, “Multi-Label Emotion Classification on Code-Mixed Text: Data and Methods,” IEEE Access, vol. 10, pp. 8779–8789, 2022, doi: 10.1109/ACCESS.2022.3143819.
Y. Camgözlü and Y. Kutlu, “Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models,” Nat. Eng. Sci., vol. 8, no. 3, pp. 214–232, 2023, doi: 10.28978/nesciences.1405175.
O. Özkaraca et al., “Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images,” Life, vol. 13, no. 2, 2023, doi: 10.3390/life13020349.
A. H. Mawaddah, C. Atika Sari, D. R. Ignatius Moses Setiadi, and E. Hari Rachmawanto, “Handwriting recognition of hiragana characters using convolutional neural network,” Proc. - 2020 Int. Semin. Appl. Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit. Disruption, iSemantic 2020, pp. 79–82, 2020, doi: 10.1109/iSemantic50169.2020.9234211.
S. Sharma, K. Guleria, S. Tiwari, and S. Kumar, “A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans,” Meas. Sensors, vol. 24, no. October, p. 100506, 2022, doi: 10.1016/j.measen.2022.100506.
J. S. H. Al-bayati and B. B. Üstünda?, “Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks,” Expert Syst., vol. 40, no. 4, pp. 1–16, 2023, doi: 10.1111/exsy.12756.
L. Gaur, U. Bhatia, N. Z. Jhanjhi, G. Muhammad, and M. Masud, “Medical image-based detection of COVID-19 using Deep Convolution Neural Networks,” Multimed. Syst., vol. 29, no. 3, pp. 1729–1738, 2023, doi: 10.1007/s00530-021-00794-6.
M. I. Fathur Rozi, N. O. Adiwijaya, and D. I. Swasono, “Identifikasi Kinerja Arsitektur Transfer Learning Vgg16, Resnet-50, Dan Inception-V3 Dalam Pengklasifikasian Citra Penyakit Daun Tomat,” J. Ris. Rekayasa Elektro, vol. 5, no. 2, p. 145, 2023, doi: 10.30595/jrre.v5i2.18050.
S. N. Rahmawati, E. W. Hidayat, and H. Mubarok, “Implementasi Deep Learning pada Pengenalan Aksara Sunda Menggunakan Metode Convolutional Neural Network,” Inser. Inf. Syst. Emerg. Technol. J., vol. 2, no. 1, pp. 46–58, 2021, doi: 10.23887/insert.v2i1.37405.
E. A. Winardi and E. Hartati, “Identifikasi Aksara Katakana Menggunakan Convolutional Neural Network Arsitektur LeNet,” J. Algoritm., vol. 2, no. 2, pp. 92–101, 2022, doi: 10.35957/algoritme.v2i2.2359.
W. Wijaya Kusuma, R. Rizal Isnanto, A. Fauzi, and P. Korespondensi, “DenseNet121 Menggunakan Kerangka Kerja TensorFlow untuk Deteksi Jenis Hewan,” J. Tek. Komput., vol. 1, no. 4, pp. 141–147, 2023, doi: 10.14710/jtk.v1i4.37009.
S. A. S. Mola, B. O. D. K. Wadu, A. N. Kenlopo, and V. C. K. Tungga, “Perbandingan Arsitektur ResNet50V2, InceptionV3, dan DenseNet121 dalam Klasifikasi Pengenalan Ekspresi Wajah,” JIKO (Jurnal Inform. dan Komputer), vol. 9, no. 2, p. 285, 2025, doi: 10.26798/jiko.v9i2.1584.
N. Wagaa, H. Kallel, and N. Mellouli, “Improved Arabic Alphabet Characters Classification Using Convolutional Neural Networks (CNN),” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/9965426.
S. K. E. Putri, F. H. Adiba, and A. K. Sari, “Implementasi Algoritma CNN Dalam Pengenalan Wajah Menggunakan VGG16,” Pros. Semin. Nas. Teknol. dan Sains, vol. 4, pp. 618–623, 2025.
S. S. Halim, B. Kanata, and S. I. Akbar, “The Klasifikasi Suara Paru-Paru Menggunakan Mel Frequency Cepstral Coefficient dan Convolutional Neural Network,” J. Bumigora Inf. Technol., vol. 6, no. 2, pp. 163–176, 2024, doi: 10.30812/bite.v6i2.4487.
E. H. Rachmawanto and P. N. Andono, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 3, pp. 183–191, 2022, doi: 10.23887/janapati.v11i3.50144.
Z. Fadhilah and N. L. Marpaung, “Pengenalan Alfabet SIBI Menggunakan Convolutional Neural Network sebagai Media Pembelajaran Bagi Masyarakat Umum,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 162–168, 2023, doi: 10.30591/jpit.v8i2.5221.
C. Grazian, Q. Jin, and G. Tangari, “Assessing the invertibility of deep biometric representations: Investigating CNN hyperparameters for enhanced security against adversarial attacks,” Expert Syst. Appl., vol. 264, no. November 2024, p. 125848, 2025, doi: 10.1016/j.eswa.2024.125848.
S. Sharma and K. Guleria, “A Deep Learning based model for the Detection of Pneumonia from Chest X-Ray Images using VGG-16 and Neural Networks,” Procedia Comput. Sci., vol. 218, pp. 357–366, 2022, doi: 10.1016/j.procs.2023.01.018.
A. M. Ismael and A. ?engür, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Expert Syst. Appl., vol. 164, no. September 2020, 2021, doi: 10.1016/j.eswa.2020.114054.
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.
S. Xu, C. Guo, Y. Zhu, G. Liu, and N. Xiong, “CNN-VAE: An intelligent text representation algorithm,” J. Supercomput., vol. 79, no. 11, pp. 12266–12291, 2023, doi: 10.1007/s11227-023-05139-w.
Q. Zhu, X. Jiang, and R. Ye, “Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN,” IEEE Access, vol. 9, pp. 149077–149088, 2021, doi: 10.1109/ACCESS.2021.3118537.
T. Chen and Z. Xie, “Japanese Short Text Classification Based on CNN-BiLSTM-Attention,” Procedia Comput. Sci., vol. 262, pp. 320–329, 2025, doi: 10.1016/j.procs.2025.05.059.
A. Nagar, A. Bhasin, and G. Mathur, “Text classification using gated fusion of n-gram features and semantic features,” Comput. y Sist., vol. 23, no. 3, pp. 1015–1020, 2019, doi: 10.13053/CyS-23-3-3278.
Y. Wu, J. Li, C. Song, and J. Chang, “Words in Pairs Neural Networks for Text Classification,” Chinese J. Electron., vol. 29, no. 3, pp. 491–500, 2020, doi: 10.1049/cje.2020.03.005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bulkis Kanata, Misbahuddin, M. Rafif Akhdan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

